Liebe Bald-Abiturientin,

lieber Bald-Abiturient,

seit 2012 bereite ich selbst meine Klassen erfolgreich auf die Abschlussprüfungen vor. Besonders wichtig finde ich hierbei, schon so früh wie möglich mit alten Prüfungsaufgaben zu arbeiten. Für die ideale Vorbereitung auf alle Kurzarbeiten, Schulaufgaben und deine Abschlussprüfung bietet dir dieses Buch:

- · alle wichtigen Themen kurz und einfach an einem passenden Beispiel erklärt
- · auf 55 Karteikarten jedes wichtige Thema zusammengefasst
- · jede Karteikarte mit Lösungsschritten für entsprechende Fragestellungen
- · Original-Prüfungsaufgaben der letzten 5 Jahre
- · ausführliche Musterlösungen zu jeder Prüfungsaufgabe

Also viel Freude und eine erfolgreiche Prüfungsvorbereitung! Johann Klingenberg

Notenschlüssel der Abschlussprüfung

Bewertung	seinheiten	Nataraniala	Note
von	bis	Notenpunkte	Note
95,5	100	15	
90,5	95	14	1
85,5	90	13	
80,5	85	12	
75,5	80	11	2
70,5	75	10	
65,5	70	9	
60,5	65	8	3
55,5	60	7	
50,5	55	6	
45,5	50	5	4
40,5	45	4	
33,5	40	3	
26,5	33	2	5
19,5	26	1	
0	19	0	6

Vielen Dank dem Bayerischen Staatsministerium für Unterricht und Kultus für die Abdruckgenehmigung der Original-Prüfungen. Die Lösungsvorschläge liegen nicht in der Verantwortung des Ministeriums.

Trotz sorgfältiger Recherche kann es vorkommen, dass nicht alle Rechteinhaber ausfindig gemacht werden konnten. Bei begründeten Ansprüchen nehmen Sie bitte direkt Kontakt auf.

Impressum Johann Klingenberg Am Stausee 14 83646 Wackersberg kontakt@mathe-portal.de

		• -				
In	ha	ltcı		77A	ick	nnis
	па	1631	/ 🔾	LC	ш	11113

	Karteikarten - Analysis					Karteik	arten - Sto	chastik		
	Thema	Polynom- funktionen	e-Funktionen			Wahrscheinlich Gesetze von de		ien		K38 K39
	wichtige Begriffe und Einflussgrößen	K1	K32	Baumdiagram	m	Bedingte Wahr	•			K40
Grundlagen	Symmetrieverhalten	K2				Stochastische A				K41
	Globalverhalten	К3	K33			Wahrscheinlich		nen		K42
	Mitternachtsformel	K4	K34	Gesetze von de					K43	
	Substitution	K5	K35	l Vierfeldertafel		Bedingte Wahr	J			K44
Nullstellen	Polynomdivision	K6				Stochastische A				K45
	gemeinsame Punkte	K7					inlichkeitsverteilung erstellen			K46
	Ungleichungen	K8		Normalverteil	ung	fehlende Paran	neter bestimme	n		K47
	Ableitungen bestimmen	К9	K36		_	$P(X - \mu < \sigma)$)			K48
	Tangente an vorgegebener Stelle	K10				Wahrscheinlich		erstellen		K49
Ableitungen	Tangente mit vorgebener Steigung	K11		Binomialverte	ilung	Standardfälle			K50	
	Differenzialquotient	K12		Sp		Spezialfälle				K51
	Differenzenquotient	K13				wichtige Begrif	egriffe			K52
	relative Extremstellen	K14				α – Fehler	- Fehler			K53
	Monotonie	K15		Hypothesente	·ST	β – Fehler				K54
Extremstellen	Wertemenge	K16		maximaler Ablehnungsbereich				K55		
extremstellen	absolute Extremstellen	K17			Prüfungen und Musterlösungen					
	Zielfunktion herleiten	K18			ı	rutungen	una iviust	eriosunge	en	
	Optimierung	K19				hne	mit		nit	
	Lage	K20		Duite	_	mittel			ilfsmittel	
Wendestellen	Krümmung	K21		Prüfungs- jahr					1	
wendestellen	Wendetangente	K22		Ja	Analysis	Stochastik	Analysis 1	Analysis 2	Stochastik 1	Stochastik 2
	steilste Stelle	K23					1	2	1	2
	Stammfunktion bestimmen	K24	K37	2021	56	63	70	81	92	101
Integralrechnung	Flächenbilanz	K25		2022	109	116	121	131	143	150
integran ecimung	Fläche zwischen Graph und x-Achse	K26								
	Fläche zwischen zwei Graphen	K27		2023	157	165	172	182	193	201
	NEW-NEW-Regel	K28		2024	209	216	223	233	244	251
Steckbriefaufgaben	Aussagen bewerten	K29		2025	258	265	271	282	292	300
Steckbilelauigabell	Term anhand Grafik ermitteln	K30		2023	230	203	2/1	202	232	300
	Term anhand Bedingungen ermitteln	K31								

!!! Achtung !!!

Die sechs Karteikarten zu e-Funktionen zeigen die Besonderheiten bzw. Veränderungen gegenüber den Polynomfunktionen. Alle anderen Fragestellungen können mit dem gleichen Vorgehen wie bei Polynomfunktionen bearbeitet werden. Aus diesem Grund werden die übrigen Themen nicht erneut behandelt.

Inhaltsverzeichnis

K1: Grundlagen - wichtige Begriffe und Einflussgrößen

Eine ganzrationale Funktion wird auch Polynomfunktion bezeichnet.

Die wichtigsten Begrifflichkeiten sind:

- allgemeine Form
- Linearfaktor
- Linearfaktorform
- Grad
- Leitkoeffizient
- Nullstelle
- Vielfachheit

Ordnen Sie diese Begrifflichkeiten dem folgenden Beispiel zu:

$$f(x) = -2x^3 - 4x^2 + 14x - 8 = -2 \cdot (x+4)^1 \cdot (x-1)^2$$
 mit $x \in \mathbb{R}$

$$f(x) = \underbrace{-2x^3 - 4x^2 + 14x - 8}_{\text{allgemeine Form}} = \underbrace{-2 \cdot \underbrace{(x+4)^1 \cdot (x-1)^2}_{\text{Linearfaktorform}}}_{\text{mit}} \text{ mit } x \in \mathbb{R}$$

Polynomfunktionen können auf zwei Arten dargestellt/notiert werden. Es gilt:

allgemeine Form

- Zahl vor x mit dem höchsten
 Exponenten heißt Leitkoeffzient
- der höchste Exponent liefert den Grad der Funktion
- Nullstellen müssen zuerst berechnet werden

Linearfaktorform

- Zahl vor den Linearfaktoren heißt Leitkoeffizient
- die Summe der Exponenten liefert den Grad der Funktion
- Nullstellen und Vielfachheiten können direkt abgelesen werden
 - \rightarrow einfache Nullstelle bei x = -4
 - \rightarrow doppelte Nullstelle bei x=+1

Standardsymmetrie

Symmetrie zum Koordinatensystem

Achsensymmetrie zur y-Achse

Punktsymmetrie zum Ursprung

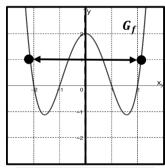
Beispiel

Gegeben sind die Funktionen

$$f: x \mapsto 0.5x^4 - 2.5x^2 + 2$$

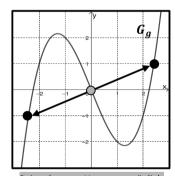
$$q: x \mapsto 0.5x^3 - 2.5x$$

mit $x \in \mathbb{R}$. Die zugehörigen Funktionsgraphen heißen G_f und G_g . Untersuchen Sie durch Rechnung das Symmetrieverhalten von G_f und G_g bezüglich des Koordinatensystems.



Spiegelung an y-Achse möglich

→ achsensymmetrisch zur y-Achse



Spiegelung an Ursprung möglich

→ punktsymmetrisch zum Ursprung

1. Achsensymmetrie überprüfen

Hierfür -x in die Funktion einsetzen.

$$f(-x) = 0.5 \cdot (-x)^4 - 2.5 \cdot (-x)^2 + 4 = 0.5x^4 - 2.5x^2 + 2$$

$$g(-x) = 0.5 \cdot (-x)^3 - 2.5 \cdot (-x) = -0.5x^3 + 2.5x$$

Wegen f(-x) = f(x) ist G_f achsensymmetrisch zur y-Achse.

Wegen $g(-x) \neq g(x)$ ist G_a nicht achsensymmetrisch zur y-Achse.

Dies kann aus der Merkhilfe auf Seite 2 entnommen werden.

2. Punktsymmetrie überprüfen

Für G_f ist keine weitere Untersuchung notwendig, da G_f bereits achsensymmetrisch zur y-Achse ist. Für G_a müssen wir $(-1) \cdot g(-x)$ bestimmen.

$$(-1) \cdot g(-x) = (-1) \cdot (-0.5x^3 + 2.5x) = 0.5x^3 - 2.5x$$

Wegen $(-1) \cdot g(-x) \neq g(x)$ ist G_q punktsymmetrisch zum Koordinatenursprung.

Dies kann ebenfalls aus der Merkhilfe auf Seite 2 entnommen werden.

Notiz

Bei Polynomfunktionen kann direkt anhand der auftretenden Exponenten das Symmetrieverhalten abgelesen werden. Es gilt:

nur gerade Exponenten → achsensymmetrisch zur y-Achse

nur ungerade Exponenten → punktsymmetrisch zum Ursprung

• gerade und ungerade Exponenten → keine Standardsymmetrie

Dies ist ein sehr einfacher Weg ans Ziel, wenn keine Rechnung verlangt wird. Hier also:

$$f: x \mapsto 0.5x^4 - 2.5x^2 + 2 = 0.5x^4 - 2.5x^2 + 2x^0$$

Es treten nur gerade Exponenten (4; 2; 0) auf. G_f ist achsensymmetrisch zur y-Achse.

$$g: x \mapsto 0.5x^3 - 2.5x = 0.5x^3 - 2.5x^1$$

Es treten nur ungerade Exponenten (3; 1) auf. G_a ist punktsymmetrisch zum Ursprung.

!!! Achtung !!!

Konstante Glieder also bei "Zahlen" muss x^0 ergänzt werden. Somit zählen diese Zahlen immer zu den geraden Exponenten. Zum Beispiel: $2x^2-7=2x^2-7x^0$

Wenn die Polynomfunktion in Linearfaktorform vorliegt, muss diese zunächst ausmulti-

pliziert werden, um den Trick mit den Exponenten anwenden zu können.

K3: Grundlagen - Globalverhalten

Singnalwörter

- untersuchen Sie das Globalverhalten von ...
- untersuchen Sie das Verhalten von ... im Unendlichen.
- untersuchen Sie ... für $x \to +\infty$
- Skizzieren Sie den Verlauf von...
- · Begründen Sie ohne weitere Rechnung, dass...

Beispiel

Gegeben seien die Funktionen

$$f: x \mapsto +0.5 \cdot (x+1)^1 \cdot (x-2)^2$$

 $g: x \mapsto -0.25 \cdot (x+2)^1 \cdot (x-1)^3$

mit $x \in \mathbb{R}.$ Die zugehörigen Funktionsgraphen heißen G_f und $\mathit{G}_g.$ Skizzieren Sie die

Graphen ${\it G_f}$ und ${\it G_g}$ jeweils in einem eigenen kartesischen Koordinatensystem.

1. Globalverhalten bestimmen

Hierfür das Vorzeichen des Leitkoeffzienten und den Grad bestimmen (vgl. K1). Grundsätzlich gilt der folgende Zusammenhang:

	Grad ungerade	Grad gerade
Leitkoeffzient positiv	Graph kommt von links unten und geht nach rechts oben	Graph kommt von links oben und geht nach rechts oben
Leitkoeffizient negativ	Graph kommt von links oben und geht nach rechts unten	Graph kommt von links unten und geht nach rechts unten

f besitzt mit +0.5 einen positiven Leitkoeffzieten.

f ist dritten Grades (Summe der Exponenten) hat also einen ungeraden Grad.

q besitzt mit -0.25 einen negativen Leitkoeffizeiten.

g ist vierten Grades (Summe der Exponenten) hat also einen geraden Grad.

2. Nullstellen und Vielfachheiten bestimmen

Mit passenden Verfahren bestimmen. Hier sind beide Funktionen in Linearfaktorform angegeben. Nullstellen und Vielfachheiten können also direkt ablesen werden:

 G_f hat bei

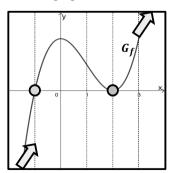
- $x_1 = -1$ einfache NS \Rightarrow x-Achse wird geschnitten
- $x_{2/3} = +2$ doppelte NS \Rightarrow x-Achse wird berührt

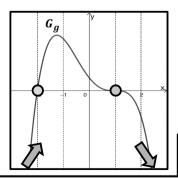
 G_a hat be

- $x_1 = -2$ einfache NS \Rightarrow x-Achse wird geschnitten
- $x_{2/3/4} = +1$ dreifache NS \Rightarrow x-Achse wird "mit Umweg" geschnitten

3. Graphen skizzieren

Hierfür zuerst das Globalverhalten und die Nullstellen markieren. Dann unter Berücksichtigung der Vielfachheiten skizzieren.





- 3 -

K19: Extremstellen - Optimierung

Singnalwörter

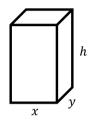
- Maximum
- Minimum
- absolut größter Wert
- · absolut kleinster Wert

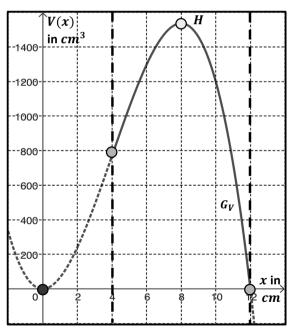
Beispiel

Aus einem Draht mit einer Länge von 144 cm soll ein Quader mit maximalem Volumen entstehen. Die Höhe des Quaders h soll wenigstens 8 cm betragen und die doppelte Länge der Grundseite x besitzen (siehe Grafik). Hieraus ergibt sich die Funktion

$$V: x \mapsto -6x^3 + 72x^2$$

mit $x \in [+4; +12]$, wobei V das Volumen des Quaders in cm^3 und x die Länge einer Grundseite in cm beschreibt. Berechnen Sie das maximale Volumen und die zugehörige Höhe des Quaders.





Grafik dient nur der Veranschaulichung

L. erste und zweite Ableitung bestimmen

$$V(x) = -6x^3 + 72x^2$$
 mit $x \in [+4; +12]$

$$V'(x) = -18x^2 + 144x$$

$$V''(x) = -36x + 144$$

2. Nullstellen von erster Ableitung bestimmen

Durch geeignetes Verfahren also hier durch ausklammern und dann auflösen nach x.

$$-18x^{2} + 144x = 0 \Leftrightarrow x \cdot (-18x + 144) = 0$$

also
$$x_1^* = 0 \notin \mathbb{D}_f$$
 bzw. $-18x + 144 = 0 \Leftrightarrow -18x = -144 \Leftrightarrow x_2^* = +8$

3. Art der Extremstellen bestimmen

Durch einsetzen der verbliebenen Nullstellen in die zweite Ableitung also in V''(x).

$$V''(+8) = -36 \cdot 8 + 144 = -144 < 0$$
 also ein relativer Hochpunkt

Alternativ kann hierfür auch eine Monotonietabelle oder eine Skizze von der ersten Ableitung erstellt werden.

4. y-Werte bestimmen

Durch einsetzen der verbliebenden Nullstellen und der Ränder der Definitionsmenge in die Ausgangsfunktion also in V(x).

$$V(+8) = -6 \cdot (+8)^3 + 72 \cdot (+8)^2 = +1.536$$

$$V(+4) = -6 \cdot (+4)^3 + 72 \cdot (+4)^2 = +768$$

$$V(+12) = -6 \cdot (+12)^3 + 72 \cdot (+12)^2 = 0$$

5. Fazit

Durch Übernahme von kleinsten y-Wert das Minimum bzw. von größten y-Wert das Maximum notieren. Dies entspricht dann dem Optimum.

Das absolut größte Volumen beträgt $V_{max}=1.536\ cm^3$ und wird mit einer Höhe von $h=2\cdot 8=16\ cm$ erreicht.

K38: Baumdiagramm - Wahrscheinlichkeiten bestimmen

Singnalwörter

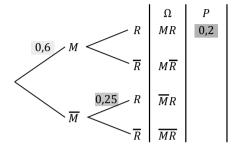
- · Wahrscheinlichkeiten aller Elementarereignisse
- · Ergebnisraum mit zugehörigen Wahrscheinlichkeiten

Beispiel

In einer Schulklasse befinden sich nur Jungen (M) und Mädchen (\overline{M}) sowie Raucher (R) und Nichtraucher (\overline{R}) . Von den insgesamt 20 Personen in der Klasse sind 12 Jungen. 20% der Klasse sind männliche Raucher. 25% der Mädchen geben an, zu rauchen. Bestimmen Sie mit Hilfe eines Baumdiagramms die Wahrscheinlichkeiten aller Elementarereignisse und ermitteln Sie damit die Wahrscheinlichkeit von dem Ereignis $E_1 = M \cup R$.

1. Anzahl der Stufen und Werte übernehmen

- Von den insgesamt 20 Personen in der Klasse sind 12 Jungen.
- 20% der Klasse sind männliche Raucher.
- 25% der Mädchen geben an, zu rauchen.

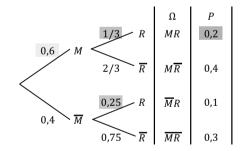


2. fehlende Werte berechnen

Hierfür die Pfadregeln berücksichtigen. Es gilt zum Beispiel:

$$P(M) + P(\overline{M}) = 1 \Leftrightarrow 0.6 + P(\overline{M}) = 1 \Leftrightarrow P(\overline{M}) = 1 - 0.6 = 0.4$$

$$P(M) \cdot P(R) = P(M \cap R) \Leftrightarrow 0.6 \cdot P(R) = 0.2 \Leftrightarrow P(R) = \frac{0.2}{0.6} = \frac{1}{3}$$



3. Wahrscheinlichkeit berechnen

Hierfür zunächst das Ereignis in Mengenschreibweise notieren.

$$E_1 = M \cup R = \{MR; M\overline{R}; \overline{M}R\}$$

und damit

$$P(E_1) = 0.2 + 0.4 + 0.1 = 0.7$$

K40: Baumdiagramm - bedingte Wahrscheinlichkeit

0

Singnalwörter

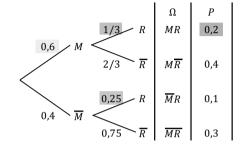
- · unter der Bedingung, dass ...
- unter der Voraussetzung, dass ...
- ... lieber als ...

Beispiel

In einer Schulklasse befinden sich nur Jungen (M) und Mädchen (\overline{M}) sowie Raucher (R) und Nichtraucher (\overline{R}) . Von den insgesamt 20 Personen in der Klasse sind 12 Jungen. 20% der Klasse sind männliche Raucher. 25% der Mädchen geben an, zu rauchen. Bestimmen Sie mit Hilfe eines Baumdiagramms die Wahrscheinlichkeiten aller Elementarereignisse und entscheiden Sie begründet, ob Jungen oder Mädchen in dieser Klasse lieber rauchen.

1. Baumdiagramm erstellen (vgl. K38)

- Von den insgesamt 20 Personen in der Klasse sind 12 Jungen.
- 20% der Klasse sind männliche Raucher.
- 25% der Mädchen geben an, zu rauchen.



$$P(M) \cdot P(R) = P(M \cap R) \Leftrightarrow 0.6 \cdot P(R) = 0.2 \Leftrightarrow P(R) = \frac{0.2}{0.6} = \frac{1}{3}$$

2. Wahrscheinlichkeit berechnen

Für die Berechnung der bedingten Wahrscheinlichkeiten gilt:

$$P_M(R) = \frac{P(M \cap R)}{P(M)} = \frac{0.2}{0.6} = \frac{1}{3}$$

$$P_{\overline{M}}(R) = \frac{P(\overline{M} \cap R)}{P(\overline{M})} = \frac{0.1}{0.4} = \frac{1}{4}$$

Dies kann aus der Merkhilfe auf Seite 4 entnommen werden. Außerdem könnten die Werte in der Mitte des Baumdiagramms direkt ausgelesen werden.

3. Fazit

Wegen

$$P_M(R) = \frac{1}{3} > \frac{1}{4} = P_{\overline{M}}(R)$$

rauchen in dieser Klasse Jungen lieber als Mädchen.

K41: Baumdiagramm - stochastische Abhängigkeit

Singnalwörter

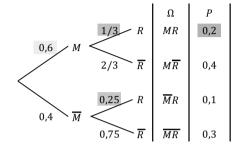
- · stochastisch abhängig
- · stochastisch unabhängig

Beispiel

In einer Schulklasse befinden sich nur Jungen (M) und Mädchen (\overline{M}) sowie Raucher (R) und Nichtraucher (\overline{R}) . Von den insgesamt 20 Personen in der Klasse sind 12 Jungen. 20% der Klasse sind männliche Raucher. 25% der Mädchen geben an, zu rauchen. Bestimmen Sie mit Hilfe eines Baumdiagramms die Wahrscheinlichkeiten aller Elementarereignisse und untersuchen Sie die Ereignisse M und R auf stochastische Abhängigkeit.

1. Baumdiagramm erstellen (vgl. K38)

- Von den insgesamt 20 Personen in der Klasse sind 12 Jungen.
- 20% der Klasse sind männliche Raucher.
- 25% der Mädchen geben an, zu rauchen.



$$P(M) \cdot P(R) = P(M \cap R) \Leftrightarrow 0.6 \cdot P(R) = 0.2 \Leftrightarrow P(R) = \frac{0.2}{0.6} = \frac{1}{3}$$

2. Wahrscheinlichkeiten berechnen

Für die Untersuchung der stochastischen Abhängigkeit gibt es zwei Wege. Hierfür werden folgende Wahrscheinlichkeiten benötigt (vgl. Merkhilfe auf S. 4):

1. Weg	2. Weg
• $P(M) = P(M \cap R) + P(M \cap \overline{R})$	• $P_M(R) = 1/3$
= 0.2 + 0.4 = 0.6	• $P(R) = P(M \cap R) + P(\overline{M} \cap R)$
• $P(R) = P(M \cap R) + P(\overline{M} \cap R)$	= 0.2 + 0.1 = 0.3
= 0.2 + 0.1 = 0.3	
• $P(M \cap R) = 0.2$	

FazitWegen

1. Weg	2. Weg
$P(M) \cdot P(R) = 0.6 \cdot 0.3 = 0.18$	$P_M(R) = 1/3$
≠	≠
$P(M \cap R) = 0.2$	P(R) = 0.3

sind die Ereignisse M und R stochastisch abhängig.

Singnalwörter

- · Wahrscheinlichkeitsverteilung
- Parameter a und b

Beispiel

Bei einem Glücksspiel wird einmalig an einem Glücksrad mit 40 gleich großen aber unterschiedlich gefärbten Feldern gedreht. Wenn ein gelbes Feld getroffen wird, muss der Spieler $3 \in \text{bezahlen}$. Sofern ein schwarzes Feld getroffen wird, müssen $2 \in \text{und}$ bei einem blauen Feld nur $1 \in \text{vom}$ Spieler bezahlt werden. Bei einem roten Feld gewinnt der Spieler $5 \in \text{Die}$ Zufallsgröße X gibt erzielten Gewinn in Euro an. Hieraus ergibt sich die folgende vollständige Wahrscheinlichkeitsverteilung von X mit $a,b \in \mathbb{R}$.

Farbe	Gelb	Schwarz	Blau	Rot
x	-3 €	-2€	-1€	+5€
P(X=x)	а	0,30	b	0,40

Berechnen Sie die Werte von a und b, wenn durchschnittlich mit einem Gewinn von $0.70 \in zu$ rechnen ist.

1. erste Gleichung aufstellen

Hierfür verwenden, dass die Summe aller Wahrscheinlichkeiten 100% ergeben muss. Diese Gleichung dann nach eine der beiden Unbekannten auflösen.

$$a + 0.30 + b + 0.40 = 1 \Leftrightarrow a + 0.7 + b = 1$$

 $\Leftrightarrow b = 0.3 - a$

2. zweite Gleichung aufstellen

Hierfür eine weitere Information der Aufgabe nutzen. Zumeist wird der Erwartungswert vorgegeben. Hier ist er als durchschnittlicher Gewinn von 0,70 € angegeben. Es folgt:

$$E(X) = 0.70 \Leftrightarrow (-3) \cdot a + (-2) \cdot 0.30 + (-1) \cdot b + (+5) \cdot 0.40 = 0.70$$
$$\Leftrightarrow -3a - 0.6 - b + 2 = 0.7$$
$$\Leftrightarrow -3a + 1.4 - b = 0.7$$

3. Parameter bestimmen

Hierfür das Ergebnis aus 1. in 2. einsetzen und dann weiter auflösen. Es folgt:

$$-3a + 1,4 - b = 0,7 \Leftrightarrow -3a + 1,4 - (0,3 - a) = 0,7$$
$$\Leftrightarrow -3a + 1,4 - 0,3 + a = 0,7$$
$$\Leftrightarrow -2a + 1,1 = 0,7$$
$$\Leftrightarrow -2a = -0,4$$
$$\Leftrightarrow a = 0,2$$

und damit

$$b = 0.3 - 0.2 = 0.1$$

Im Folgenden werden relative Häufigkeiten als Wahrscheinlichkeiten interpretiert.

- 1.0 Ein großer Bergbauernhof bietet seinen Gästen während ihres Urlaubsaufenthalts verschiedene Möglichkeiten an, das Leben auf dem Land zu genießen. Erfahrungsgemäß entscheiden sich die Hälfte aller Gäste auf einer der einsamen Hütten (H) zur Ruhe zu kommen, 30 % verbringen ihren Aufenthalt im gemütlichen Stadl (S) und die übrigen Besucher übernachten im Bauernhaus (B). Bei der Anreise hat jeder Gast die Wahl, den steilen Weg bis zum Feriendomizil zu Fuß zurückzulegen (T) oder sich von einem Traktorshuttle (T) nach oben befördern zu lassen. Von den Hüttenbewohnern nutzen nur ein Viertel diesen Service, bei den Stadlgästen sind es die Hälfte und von den Gästen im Bauernhaus erklimmt keiner zu Fuß den Berg. Für Stadlgäste und Gäste des Bauernhauses besteht zusätzlich die Möglichkeit, ein Frühstück (F) dazu zu buchen. Jeweils ein Fünftel dieser Gäste nutzen dieses Angebot nicht, unabhängig davon, ob der Shuttleservice in Anspruch genommen wird oder nicht. Hüttenbewohner können kein Frühstück buchen. Die Befragung eines zufällig ausgewählten Gastes nach seinen getätigten Buchungen wird als Zufallsexperiment aufgefasst.
- 1.1 Bestimmen Sie unter Verwendung eines Baumdiagramms die Wahrscheinlichkeiten aller Elementarereignisse des betrachteten Zufallsexperiments.
- 1.2 Gegeben sind folgende Ereignisse:
 - E₁: "Ein Gast entscheidet sich gegen den Aufstieg zum Bergbauernhof."
 - $E_2 = \{STF; S\overline{T}F; BTF\}$

Geben Sie E_1 in aufzählender Mengenschreibweise an und berechnen Sie $P(E_1)$. Fassen Sie E_2 möglichst einfach in Worte und untersuchen Sie E_1 und E_2 auf Unvereinbarkeit.

- 2.0 Für Kinder gibt es auf dem Bauernhof spezielle Angebote, die stetig der Nachfrage angepasst werden sollen. Derzeit stehen Ponys (P) zur Pferdepflege und für kleine Ausritte zur Verfügung. Ebenso besteht die Möglichkeit zur Mithilfe im Kuh- und Kälberstall (S). Aus dem Vorjahr ist bekannt, dass sich von 400 Kindern 108 für die Arbeit im Stall und 250 für die Ponys begeisterten, wobei 20 % dieser Ponyinteressierten auch von der Mithilfe im Stall nicht genug bekommen konnten.
- 2.1 Berechnen Sie, für wie viel Prozent der Kinder ein Alternativangebot ohne Tierkontakt wünschenswert wäre.
- 2.2 Ermitteln Sie, ob die Mithilfe im Stall bei den Ponyinteressierten beliebter ist als bei denen, die sich nicht für Ponys begeistern.

3.0 Nachdem beim Besitzer des Bergbauernhofs im vorletzten Jahr immer wieder Anfragen nach Freizeitaktivitäten für Erwachsene eingingen, bietet er seit letztem Jahr auch die in folgender Preisliste aufgeführten Erlebnisse an:

Preisliste für Erlebnisse	
Melkkurs	12 €
geführte Wanderung	8€
bayerischer Kochkurs	22 €
© 10% Rabatt auf den Gesamtpreis bei Buchung der ge Wanderung in Kombination mit dem Kochkurs	

Die Gäste zeigen erfahrungsgemäß folgendes Wahlverhalten:

nur Melkkurs	nur Kochkurs	nur geführte Wanderung	Kochkurs und geführte Wanderung	kein Erlebnis
15%	22%	18%	10%	35%

Andere Kombinationen von Erlebnissen wurden nicht gewählt.

- .1 Ermitteln Sie die zu erwartenden Einnahmen des Bergbauernhofs durch das Erlebnisangebot für das aktuelle Jahr, wenn mit 900 erwachsenen Gästen für dieses Jahr gerechnet wird.
 - Da es für einzelne Erlebnisse für die zeitgleich anwesenden Urlaubsgäste Teilnehmerbegrenzungen gibt, interessiert sich der Landwirt für die Wahrscheinlichkeiten der folgenden Ereignisse:
 - E₃: "Von 25 Gästen wählen genau acht nur die geführte Wanderung."
 - E4: "Von 25 Gästen wählen mindestens vier und weniger als neun den Melkkurs."

Bestimmen Sie die zughörigen Wahrscheinlichkeiten.

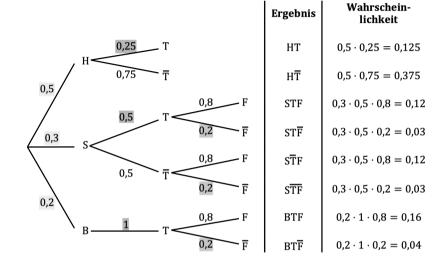
Aufgrund der steigenden Nachfrage nach "Urlaub auf dem Bauernhof" überlegt der Besitzer des Bergbauernhofs zusätzlich ein besonderes Erlebnis, Übernachtungen im Freien auf einem gemütlichen Heuwagen, anzubieten. Ein befreundeter Bauernhofbesitzer behauptet basierend auf seinen Erfahrungen, dass höchstens 30 % der Gäste dieses Angebot in Anspruch nehmen. Dennoch ist der Besitzer des Bergbauernhofs der festen Überzeugung, dass Übernachtungen im Freien ein neuer Trend sind, und schätzt die Nachfrage deutlich höher ein (Gegenhypothese). Um dies zu überprüfen, befragt er 200 seiner Gäste. Entwickeln Sie für den Bauern einen geeigneten Hypothesentest auf einem Signifikanzniveau von 5 % und geben Sie an, ob der Behauptung des befreundeten Bauern auf Basis des Tests zugestimmt werden kann, wenn sich 131 Befragte gegen eine Übernachtung im Freien aussprechen.

3.2

Im Folgenden werden relative Häufigkeiten als Wahrscheinlichkeiten interpretiert.

- Ein großer Bergbauernhof bietet seinen Gästen während ihres Urlaubsaufenthalts verschiedene Möglichkeiten an, das Leben auf dem Land zu genießen. Erfahrungsgemäß entscheiden sich die Hälfte aller Gäste auf einer der einsamen Hütten (H) zur Ruhe zu kommen, 30 % verbringen ihren Aufenthalt im gemütlichen Stadl (S) und die übrigen Besucher übernachten im Bauernhaus (B). Bei der Anreise hat jeder Gast die Wahl, den steilen Weg bis zum Feriendomizil zu Fuß zurückzulegen (T) oder sich von einem Traktorshuttle (T) nach oben befördern zu lassen. Von den Hüttenbewohnern nutzen nur ein Viertel diesen Service, bei den Stadlgästen sind es die Hälfte und von den Gästen im Bauernhaus erklimmt keiner zu Fuß den Berg. Für Stadlgäste und Gäste des Bauernhauses besteht zusätzlich die Möglichkeit, ein Frühstück (F) dazu zu buchen. Jeweils ein Fünftel dieser Gäste nutzen dieses Angebot nicht, unabhängig davon, ob der Shuttleservice in Anspruch genommen wird oder nicht. Hüttenbewohner können kein Frühstück buchen. Die Befragung eines zufällig ausgewählten Gastes nach seinen getätigten Buchungen wird als Zufallsexperiment aufgefasst.
- 1.1 Bestimmen Sie unter Verwendung eines Baumdiagramms die Wahrscheinlichkeiten aller Elementarereignisse des betrachteten Zufallsexperiments.

Baumdiagramm

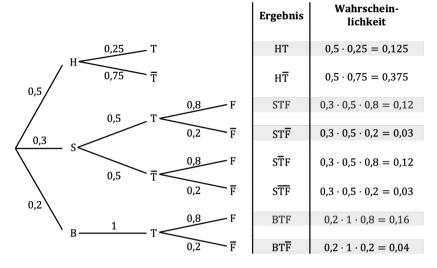


 $\label{thm:continuous} \mbox{Im Folgenden werden relative H\"{a}ufigkeiten als Wahrscheinlichkeiten} interpretiert.$

- Ein großer Bergbauernhof bietet seinen Gästen während ihres Urlaubsaufenthalts verschiedene Möglichkeiten an, das Leben auf dem Land zu genießen. Erfahrungsgemäß entscheiden sich die Hälfte aller Gäste auf einer der einsamen Hütten (H) zur Ruhe zu kommen, 30 % verbringen ihren Aufenthalt im gemütlichen Stadl (S) und die übrigen Besucher übernachten im Bauernhaus (B). Bei der Anreise hat jeder Gast die Wahl, den steilen Weg bis zum Feriendomizil zu Fuß zurückzulegen (T) oder sich von einem Traktorshuttle (T) nach oben befördern zu lassen. Von den Hüttenbewohnern nutzen nur ein Viertel diesen Service, bei den Stadlgästen sind es die Hälfte und von den Gästen im Bauernhaus erklimmt keiner zu Fuß den Berg. Für Stadlgäste und Gäste des Bauernhauses besteht zusätzlich die Möglichkeit, ein Frühstück (F) dazu zu buchen. Jeweils ein Fünftel dieser Gäste nutzen dieses Angebot nicht, unabhängig davon, ob der Shuttleservice in Anspruch genommen wird oder nicht. Hüttenbewohner können kein Frühstück buchen. Die Befragung eines zufällig ausgewählten Gastes nach seinen getätigten Buchungen wird als Zufallsexperiment aufgefasst.
- 1.1 Bestimmen Sie unter Verwendung eines Baumdiagramms die Wahrscheinlichkeiten aller Elementarereignisse des betrachteten Zufallsexperiments.
- 1.2 Gegeben sind folgende Ereignisse:
 - E₁: "Ein Gast entscheidet sich gegen den Aufstieg zum Bergbauernhof."
 - $E_2 = \{STF; S\overline{T}F; BTF\}$

Geben Sie E_1 in aufzählender Mengenschreibweise an und berechnen Sie $P(E_1)$. Fassen Sie E_2 möglichst einfach in Worte und untersuchen Sie E_1 und E_2 auf Unvereinbarkeit.

bereits bekannt aus 1.1



E₁ in Mengenschreibweise und Wahrscheinlichkeit

 $E_1 = \{HT; STF; ST\overline{F}; BTF; BT\overline{F}\}\$ $P(E_1) = 0.125 + 0.12 + 0.03 + 0.16 + 0.04 = 0.475$

E2 in einfachen Worten

E2: "Ein Gast bucht Frühstück dazu"

Unvereinbarkeit von E_1 und E_2

 E_1 und E_2 sind unvereinbar, wenn $E_1 \cap E_2 = \emptyset$ (vgl. Merkhilfe) $E_1 \cap E_2 = \{STF; BTF\}$ also sind E_1 und E_2 vereinbar

4

 $\label{thm:continuous} \mbox{Im Folgenden werden relative H\"{a}ufigkeiten als Wahrscheinlichkeiten} interpretiert.$

- 1.0 Ein großer Bergbauernhof bietet seinen Gästen während ihres Urlaubsaufenthalts verschiedene Möglichkeiten an, das Leben auf dem Land zu genießen. Erfahrungsgemäß entscheiden sich die Hälfte aller Gäste auf einer der einsamen Hütten (H) zur Ruhe zu kommen, 30 % verbringen ihren Aufenthalt im gemütlichen Stadl (S) und die übrigen Besucher übernachten im Bauernhaus (B). Bei der Anreise hat jeder Gast die Wahl, den steilen Weg bis zum Feriendomizil zu Fuß zurückzulegen (T) oder sich von einem Traktorshuttle (T) nach oben befördern zu lassen. Von den Hüttenbewohnern nutzen nur ein Viertel diesen Service, bei den Stadlgästen sind es die Hälfte und von den Gästen im Bauernhaus erklimmt keiner zu Fuß den Berg. Für Stadlgäste und Gäste des Bauernhauses besteht zusätzlich die Möglichkeit, ein Frühstück (F) dazu zu buchen. Jeweils ein Fünftel dieser Gäste nutzen dieses Angebot nicht, unabhängig davon, ob der Shuttleservice in Anspruch genommen wird oder nicht. Hüttenbewohner können kein Frühstück buchen. Die Befragung eines zufällig ausgewählten Gastes nach seinen getätigten Buchungen wird als Zufallsexperiment aufgefasst.
- 1.1 Bestimmen Sie unter Verwendung eines Baumdiagramms die Wahrscheinlichkeiten aller Elementarereignisse des betrachteten Zufallsexperiments.
- 1.2 Gegeben sind folgende Ereignisse:
 - E₁: "Ein Gast entscheidet sich gegen den Aufstieg zum Bergbauernhof."
 - $E_2 = \{STF; S\overline{T}F; BTF\}$

Geben Sie E_1 in aufzählender Mengenschreibweise an und berechnen Sie $P(E_1)$. Fassen Sie E_2 möglichst einfach in Worte und untersuchen Sie E_1 und E_2 auf Unvereinbarkeit.

- 2.0 Für Kinder gibt es auf dem Bauernhof spezielle Angebote, die stetig der Nachfrage angepasst werden sollen. Derzeit stehen Ponys (P) zur Pferdepflege und für kleine Ausritte zur Verfügung. Ebenso besteht die Möglichkeit zur Mithilfe im Kuh- und Kälberstall (S). Aus dem Vorjahr ist bekannt, dass sich von 400 Kindern 108 für die Arbeit im Stall und 250 für die Ponys begeisterten, wobei 20 % dieser Ponyinteressierten auch von der Mithilfe im Stall nicht genug bekommen konnten.
- Berechnen Sie, für wie viel Prozent der Kinder ein Alternativangebot ohne Tierkontakt wünschenswert wäre.

Vierfeldertafel erstellen

	P	\overline{P}	
S	$0.2 \cdot 250 = 50$	58	108
\overline{S}	200	92	292
	250	150	400

Wahrscheinlichkeit berechnen

E: "Kind möchte Alternativangebot ohne Tierkontakt"

$$P(E) = P(\overline{S} \cap \overline{P}) = \frac{92}{400} = 0.23$$

4

 $\label{thm:continuous} \mbox{Im Folgenden werden relative H\"{a}ufigkeiten als Wahrscheinlichkeiten} interpretiert.$

- 1.0 Ein großer Bergbauernhof bietet seinen Gästen während ihres Urlaubsaufenthalts verschiedene Möglichkeiten an, das Leben auf dem Land zu genießen. Erfahrungsgemäß entscheiden sich die Hälfte aller Gäste auf einer der einsamen Hütten (H) zur Ruhe zu kommen, 30 % verbringen ihren Aufenthalt im gemütlichen Stadl (S) und die übrigen Besucher übernachten im Bauernhaus (B). Bei der Anreise hat jeder Gast die Wahl, den steilen Weg bis zum Feriendomizil zu Fuß zurückzulegen (T) oder sich von einem Traktorshuttle (T) nach oben befördern zu lassen. Von den Hüttenbewohnern nutzen nur ein Viertel diesen Service, bei den Stadlgästen sind es die Hälfte und von den Gästen im Bauernhaus erklimmt keiner zu Fuß den Berg. Für Stadlgäste und Gäste des Bauernhauses besteht zusätzlich die Möglichkeit, ein Frühstück (F) dazu zu buchen. Jeweils ein Fünftel dieser Gäste nutzen dieses Angebot nicht, unabhängig davon, ob der Shuttleservice in Anspruch genommen wird oder nicht. Hüttenbewohner können kein Frühstück buchen. Die Befragung eines zufällig ausgewählten Gastes nach seinen getätigten Buchungen wird als Zufallsexperiment aufgefasst.
- 1.1 Bestimmen Sie unter Verwendung eines Baumdiagramms die Wahrscheinlichkeiten aller Elementarereignisse des betrachteten Zufallsexperiments.
- 1.2 Gegeben sind folgende Ereignisse:
 - E₁: "Ein Gast entscheidet sich gegen den Aufstieg zum Bergbauernhof."
 - $E_2 = \{STF; S\overline{T}F; BTF\}$

Geben Sie E_1 in aufzählender Mengenschreibweise an und berechnen Sie $P(E_1)$. Fassen Sie E_2 möglichst einfach in Worte und untersuchen Sie E_1 und E_2 auf Unvereinbarkeit.

- 2.0 Für Kinder gibt es auf dem Bauernhof spezielle Angebote, die stetig der Nachfrage angepasst werden sollen. Derzeit stehen Ponys (P) zur Pferdepflege und für kleine Ausritte zur Verfügung. Ebenso besteht die Möglichkeit zur Mithilfe im Kuh- und Kälberstall (S). Aus dem Vorjahr ist bekannt, dass sich von 400 Kindern 108 für die Arbeit im Stall und 250 für die Ponys begeisterten, wobei 20 % dieser Ponyinteressierten auch von der Mithilfe im Stall nicht genug bekommen konnten.
- 2.1 Berechnen Sie, für wie viel Prozent der Kinder ein Alternativangebot ohne Tierkontakt 3 wünschenswert wäre.
- 2.2 Ermitteln Sie, ob die Mithilfe im Stall bei den Ponyinteressierten beliebter ist als bei denen, die sich nicht für Ponys begeistern.

bereits bekannt aus 2.1

	P	\overline{P}	
S	$0.2 \cdot 250 = 50$	58	108
\overline{S}	200	92	292
	250	150	400

Wahrscheinlichkeiten berechnen

Kind hilft im Stall mit, unter der Bedingung, dass Interesse für Ponys besteht

$$P_P(S) = \frac{P(P \cap S)}{P(P)} = \frac{\frac{50}{400}}{\frac{250}{400}} = \frac{50}{250} = 0,20$$

Kind hilft im Stall mit, unter der Bedingung, dass kein Interesse für Ponys besteht

$$P_{\overline{p}}(S) = \frac{P(\overline{P} \cap S)}{P(\overline{P})} = \frac{\frac{58}{400}}{\frac{150}{400}} = \frac{58}{150} = \frac{29}{75} \approx 0,39$$

Fazit

$$P_P(S) = 0.20 < 0.39 = P_{\overline{D}}(S)$$

→ die ponyinteressierten Kinder helfen weniger gerne im Stall mit

4

3.0 Nachdem beim Besitzer des Bergbauernhofs im vorletzten Jahr immer wieder Anfragen nach Freizeitaktivitäten für Erwachsene eingingen, bietet er seit letztem Jahr auch die in folgender Preisliste aufgeführten Erlebnisse an:

② 10% Rabatt auf den Gesamtpreis bei Buchung der geführten ② Wanderung in Kombination mit dem Kochkurs!

Die Gäste zeigen erfahrungsgemäß folgendes Wahlverhalten:

nur Melkkurs	nur Kochkurs	nur geführte Wanderung	Kochkurs und geführte Wanderung	kein Erlebnis
15%	22%	18%	10%	35%

Andere Kombinationen von Erlebnissen wurden nicht gewählt.

3.1 Ermitteln Sie die zu erwartenden Einnahmen des Bergbauernhofs durch das Erlebnisangebot für das aktuelle Jahr, wenn mit 900 erwachsenen Gästen für dieses Jahr gerechnet wird.

Zufallsgröße notieren und Tabelle erstellen

X: "Einnahmen in € pro Gast"

X	X ²	P(X)
12		0,15
22		0,22
8	wird hier nicht benötigt	0,18
$0, 9 \cdot (8 + 22) = 27$	zeneuge	0,10
0		0,35
Summe		1

Maßzahlen berechnen

$$E(X) = 12 \cdot 0.15 + 22 \cdot 0.22 + 8 \cdot 0.18 + 27 \cdot 0.10 + 0 \cdot 0.35 = 10.78$$

erwartete Jahreseinnahmen

3.0 Nachdem beim Besitzer des Bergbauernhofs im vorletzten Jahr immer wieder Anfragen nach Freizeitaktivitäten für Erwachsene eingingen, bietet er seit letztem Jahr auch die in folgender Preisliste aufgeführten Erlebnisse an:

© 10% Rabatt auf den Gesamtpreis bei Buchung der geführten © Wanderung in Kombination mit dem Kochkurs!

Die Gäste zeigen erfahrungsgemäß folgendes Wahlverhalten:

nur Melkkurs	nur Kochkurs	nur geführte Wanderung	Kochkurs und geführte Wanderung	kein Erlebnis
15%	22%	18%	10%	35%

Andere Kombinationen von Erlebnissen wurden nicht gewählt.

- 3.1 Ermitteln Sie die zu erwartenden Einnahmen des Bergbauernhofs durch das Erlebnisangebot für das aktuelle Jahr, wenn mit 900 erwachsenen Gästen für dieses Jahr gerechnet wird.
- 3.2 Da es für einzelne Erlebnisse für die zeitgleich anwesenden Urlaubsgäste Teilnehmerbegrenzungen gibt, interessiert sich der Landwirt für die Wahrscheinlichkeiten der folgenden Ereignisse:
 - E₃: "Von 25 Gästen wählen genau acht nur die geführte Wanderung."
 - E₄: "Von 25 Gästen wählen mindestens vier und weniger als neun den Melkkurs."

Bestimmen Sie die zughörigen Wahrscheinlichkeiten.

Parameter

$$n = 25; p = 0.18; q = 0.82$$

Zahlenstrahl

$$X = 8$$

0	1	2	 7	8	9	10	 23	24	25

Ergebnis

$$P(E_3) = P(X = 8) = {25 \choose 8} \cdot 0.18^8 \cdot 0.82^{17} = 0.04084$$

3.0 Nachdem beim Besitzer des Bergbauernhofs im vorletzten Jahr immer wieder Anfragen nach Freizeitaktivitäten für Erwachsene eingingen, bietet er seit letztem Jahr auch die in folgender Preisliste aufgeführten Erlebnisse an:

Preisliste für Erlebnisse	
Melkkurs	12€
geführte Wanderung	8€
bayerischer Kochkurs	22 €
© 10% Rabatt auf den Gesamtpreis bei Buchung der ge Wanderung in Kombination mit dem Kochkur.	

Die Gäste zeigen erfahrungsgemäß folgendes Wahlverhalten:

nur Melkkurs	nur Kochkurs	nur geführte Wanderung	Kochkurs und geführte Wanderung	kein Erlebnis
15%	22%	18%	10%	35%

Andere Kombinationen von Erlebnissen wurden nicht gewählt.

- 3.1 Ermitteln Sie die zu erwartenden Einnahmen des Bergbauernhofs durch das Erlebnisangebot für das aktuelle Jahr, wenn mit 900 erwachsenen Gästen für dieses Jahr gerechnet wird.
- 3.2 Da es für einzelne Erlebnisse für die zeitgleich anwesenden Urlaubsgäste Teilnehmerbegrenzungen gibt, interessiert sich der Landwirt für die Wahrscheinlichkeiten der folgenden Ereignisse:
 - E₃: "Von 25 Gästen wählen genau acht nur die geführte Wanderung."
 - E_4 : "Von 25 Gästen wählen mindestens vier und weniger als neun den Melkkurs."

Bestimmen Sie die zughörigen Wahrscheinlichkeiten.

Parameter

$$n = 25; p = 0.15; q = 0.85$$

Zahlenstrahl

 $4 \le X < 9$

0	1	2	3	4	5	6	7	8	9	10	 23	24	25

Ergebnis

$$P(E_4) = P(4 \le X < 9) = F_{0,15}^{25}(8) - F_{0,15}^{25}(3)$$

= 0,99203 - 0,47112
= 0,52091

3.0 Nachdem beim Besitzer des Bergbauernhofs im vorletzten Jahr immer wieder Anfragen nach Freizeitaktivitäten für Erwachsene eingingen, bietet er seit letztem Jahr auch die in folgender Preisliste aufgeführten Erlebnisse an:

Preisliste für Erlebnisse	
Melkkurs	12 €
geführte Wanderung	8€
bayerischer Kochkurs	22 €
© 10% Rabatt auf den Gesamtpreis bei Buchung der ge Wanderung in Kombination mit dem Kochkurs	

Die Gäste zeigen erfahrungsgemäß folgendes Wahlverhalten:

nur Melkkurs	nur Kochkurs	nur geführte Wanderung	Kochkurs und geführte Wanderung	kein Erlebnis
15%	22%	18%	10%	35%

Andere Kombinationen von Erlebnissen wurden nicht gewählt.

- 3.1 Ermitteln Sie die zu erwartenden Einnahmen des Bergbauernhofs durch das Erlebnisangebot für das aktuelle Jahr, wenn mit 900 erwachsenen Gästen für dieses Jahr gerechnet wird.
- 3.2 Da es für einzelne Erlebnisse für die zeitgleich anwesenden Urlaubsgäste Teilnehmerbegrenzungen gibt, interessiert sich der Landwirt für die Wahrscheinlichkeiten der folgenden Ereignisse:
 - E₃: "Von 25 Gästen wählen genau acht nur die geführte Wanderung."
 - E_{Δ} : "Von 25 Gästen wählen mindestens vier und weniger als neun den Melkkurs."

Bestimmen Sie die zughörigen Wahrscheinlichkeiten.

Aufgrund der steigenden Nachfrage nach "Urlaub auf dem Bauernhof" überlegt der Besitzer des Bergbauernhofs zusätzlich ein besonderes Erlebnis, Übernachtungen im Freien auf einem gemütlichen Heuwagen, anzubieten. Ein befreundeter Bauernhofbesitzer behauptet basierend auf seinen Erfahrungen, dass höchstens 30 % der Gäste dieses Angebot in Anspruch nehmen. Dennoch ist der Besitzer des Bergbauernhofs der festen Überzeugung, dass Übernachtungen im Freien ein neuer Trend sind, und schätzt die Nachfrage deutlich höher ein (Gegenhypothese). Um dies zu überprüfen, befragt er 200 seiner Gäste. Entwickeln Sie für den Bauern einen geeigneten Hypothesentest auf einem Signifikanzniveau von 5 % und geben Sie an, ob der Behauptung des befreundeten Bauern auf Basis des Tests zugestimmt werden kann, wenn sich 131 Befragte gegen eine Übernachtung im Freien aussprechen.

Parameter

$$n = 200; p = 0.30; q = 0.70$$

X: "Anzahl der Übernachtungen im Freien unter 200 Gästen"

Zahlenstrahl

	$H_0: p \le 0.30$									<i>H</i> ₁ : <i>p</i>	> 0,30	
	A_0										A_1	
0	0 10 20 30 40 50 60 k						k	k+1		190	200	
									h	öchs	tens 5	%

α-Fehler bzw. Fehler 1. Art bzw. Irrtumswahrscheinlichkeit bzw. Signivikanzniveau

$$P(X \ge k+1) \le 0,05 \Leftrightarrow 1 - F_{0,30}^{200}(k) \le 0,05$$

 $\Leftrightarrow 0,95 \le F_{0,30}^{200}(k)$ "auslesen im Tafelwerk"
 $\Leftrightarrow k=71$

also

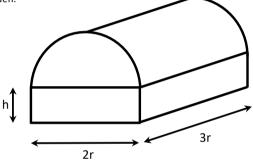
$$A_0 = \{0; ...; 71\}$$
 und $A_1 = \{72; ...; 200\}$

Entscheidung

- → 131 Gäste wollen nicht im Freien übernachten
- \rightarrow 200 131 = 69 Gäste übernachten im Freien
- \rightarrow 69 \in A_0 also kann der Behauptung des befreundeten Bauern zugestimmt werden

- Gegeben ist die Funktion $f: x \mapsto -\frac{1}{8}x^4 + 2x^2$ mit der Definitionsmenge $\mathbb{D}_f = \mathbb{R}$. Der Graph der Funktion f in einem kartesischen Koordinatensystem wird mit G_f bezeichnet.
- 1.1 Ermitteln Sie die maximalen Monotonieintervalle der Funktion f sowie jeweils die Art 9 und Koordinaten der relativen Extrempunkte von G_f . Geben Sie die Wertemenge \mathbb{W}_f an.
- 1.2 Berechnen Sie die Wendestellen des Graphen von f und entscheiden Sie begründet, ob es sich dabei um Stellen mit maximaler positiver bzw. maximaler negativer Steigung von G_f handelt oder nicht.
- 1.3 Gegeben ist die Funktion $g: x \mapsto -4x 2$ mit der Definitionsmenge $\mathbb{D}_g = \mathbb{R}$. Zeigen Sie 2 rechnerisch, dass die Gerade G_g Tangente an den Graphen G_f an der Stelle x = -2 ist.
- 2.4 Zeichnen Sie unter Verwendung bisheriger Ergebnisse und weiterer geeigneter Funktionswerte den Graphen G_f für $-4 \le x \le +4$ in ein kartesisches Koordinatensystem. Verwenden Sie als Maßstab 1 LE =1 cm für beide Achsen.
- 2.0 Während das Bundesamt für Naturschutz seit 20 Jahren die Ausbreitung von Wölfen in Deutschland fördert, fordern u. a. Weidetierhalter und Jäger zunehmend eine Aufhebung des Abschussverbots von Wölfen. Um über die eventuelle Aufhebung dieses Verbots zu entscheiden, soll die Entwicklung der Anzahl der Wolfsrudel in Deutschland modelliert werden. Die Entwicklung seit dem Jahr 2008 lässt sich näherungsweise durch die Funktion N mit der Funktionsgleichung $N(t) = N_0 \cdot e^{C \cdot t}$ mit $t, N_0, c \in \mathbb{R}$ und $t \geq 0, N_0 > 0, c > 0$ darstellen. Der Funktionswert von N gibt die Anzahl der Wolfsrudel in Deutschland zum Zeitpunkt t an. Dabei steht t für die seit Ende des Jahres 2008 $(t_0 = 0)$ vergangene Zeit in Jahren. Endes des Jahres 2013 wurden 18 Wolfsrudel in Deutschland gezählt. Ende 2017 lag die Zahl der Wolfsrudel bereits bei 60.
- 2.1 Ermitteln Sie die Werte der Parameter N_0 und c der Funktion N. Runden Sie N_0 4 ganzzahlig und c auf drei Nachkommastellen.
- $\mbox{2.2.0} \quad \mbox{Im Folgenden gilt } N(t) = 4 \cdot e^{0{,}301 \cdot t}. \label{eq:energy}$
- 2.2.1 Das Bundesamt für Naturschutz geht davon aus, dass Deutschland maximal Lebensraum 3 für 440 Rudel bieten kann. Berechnen Sie, in welchem Jahr die Anzahl der Wolfsrudel laut dem Modell aus 2.0 voraussichtlich diesen Wert erreicht.
- 2.2.2 Geben Sie die Funktionsgleichung der Funktion N in der Form $N(t) = N_0 \cdot b^t$ mit b > 0 an und folgern Sie daraus die prozentuale Zunahme der Anzahl der Wolfsrudel pro Jahr. Runden Sie b auf drei Nachkommastellen.

Ein Tiergarten plant den Bau eines Tropenhauses, in dem ein künstliches Ökosystem mit Lebensbedingungen für tropische Pflanzen- und Tierarten geschaffen werden soll. Das Tropenhaus soll die Form eines Quaders mit aufgesetztem Halbzylinder bekommen. Der Radius des Halbzylinders wird mit r bezeichnet. Der Quader hat die Breite 2r, die Länge 3r und die Höhe h (siehe Skizze). Um möglichst ideale klimatische Bedingungen zu schaffen, sollen die Außenwände des Tropenhauses und das Dach aus Glas bestehen. Hierfür sind $1.000~{\rm m}^2$ Glas vorgesehen. Die Maßzahl des Volumens des Tropenhauses in Abhängigkeit vom Radius r des Halbzylinders lässt sich durch die Funktionswerte der Funktion $V: r \mapsto V(r)$ beschreiben. Aus den Baurichtlinien geht hervor, dass der Radius r des Halbzylinders maximal $8.5~{\rm m}$ betragen darf. Der Tiergartenbetreiber fordert hierfür mindestens $4~{\rm m}$. Bei den Berechnungen kann auf das Mitführen von Einheiten verzichtet werden.



Stellen Sie eine Gleichung der in 3.0 eingeführten Funktion V auf. Bestimmen Sie dazu vorab die Maßzahl A des Flächeninhalts der insgesamt zu verglasenden Oberfläche des Tropenhauses in Abhängigkeit des Radius des Halbzylinders und der Höhe des Quaders.

[mögliche Ergebnisse:
$$A(r,h) = 10rh + 4\pi r^2$$
 und $V(r) = 600r - 0.9\pi r^3$]

Um den Pflanzen und Tieren möglichst viel Lebensraum zur Verfügung zu stellen, soll das Tropenhaus maximalen Rauminhalt besitzen. Bestimmen Sie den Radius r so, dass die Maßzahl des Volumens des Tropenhauses den absolut größten Werte annimmt und geben Sie diesen maximalen Wert an. Runden Sie Ihre Ergebnisse auf zwei Nachkommastellen.

- Gegeben ist die Funktion $f: x \mapsto -\frac{1}{8}x^4 + 2x^2$ mit der Definitionsmenge $\mathbb{D}_f = \mathbb{R}$. Der Graph der Funktion f in einem kartesischen Koordinatensystem wird mit G_f bezeichnet.
- 1.1 Ermitteln Sie die maximalen Monotonieintervalle der Funktion f sowie jeweils die Art und Koordinaten der relativen Extrempunkte von G_f . Geben Sie die Wertemenge \mathbb{W}_f an.

erste Ableitung

$$f(x) = -\frac{1}{8}x^4 + 2x^2$$
$$f'(x) = -\frac{1}{2}x^3 + 4x$$

Nullstellen von erster Ableitung

$$f'(x) = 0 \Leftrightarrow -\frac{1}{2}x^3 + 4x = 0 | \cdot (-2)$$

$$\Leftrightarrow x^3 - 8x = 0$$

$$\Leftrightarrow x \cdot (x^2 - 8) = 0$$

$$\Leftrightarrow x \cdot (x + \sqrt{8}) \cdot (x - \sqrt{8}) = 0$$
 (dritte binomische Formel)

also

$$x_1^* = 0$$
 bzw. $x_2^* = -\sqrt{8} \approx -2.83$ bzw. $x_3^* = +\sqrt{8} \approx +2.83$

Monotonietabelle

х	-3	$-\sqrt{8}$	-1	0	+1	$+\sqrt{8}$	+3
f'(x)	(0		0	(0	
G_f	sms	H ₁	smf	T	sms	H ₂	smf

 G_f ist sms in den Intervallen $]-\infty;-\sqrt{8}]$ und $[0;+\sqrt{8}]$ G_f ist smf in den Intervallen $[-\sqrt{8};0]$ und $[+\sqrt{8};+\infty[$

y-Koordinaten

Hierfür in Ausgangsfunktion einsetzen.

$$f(-\sqrt{8}) = -\frac{1}{8} \cdot (-\sqrt{8})^4 + 2 \cdot (-\sqrt{8})^2 = +8 \text{ also } H_1(-\sqrt{8}|+8)$$

$$f(0) = -\frac{1}{8} \cdot (0)^4 + 2 \cdot (0)^2 = 0 \text{ also } T(0|0)$$

$$f(+\sqrt{8}) = -\frac{1}{8} \cdot (+\sqrt{8})^4 + 2 \cdot (+\sqrt{8})^2 = +8 \text{ also } H_2(+\sqrt{8}|+8)$$

Fazit

 G_f kommt von links unten und geht nach rechts unten (vgl. Monotonie). Somit

$$\mathbb{W}_f =]-\infty;+8]$$

- Gegeben ist die Funktion $f: x \mapsto -\frac{1}{8}x^4 + 2x^2$ mit der Definitionsmenge $\mathbb{D}_f = \mathbb{R}$. Der Graph der Funktion f in einem kartesischen Koordinatensystem wird mit G_f bezeichnet.
- 1.1 Ermitteln Sie die maximalen Monotonieintervalle der Funktion f sowie jeweils die Art 9 und Koordinaten der relativen Extrempunkte von G_f . Geben Sie die Wertemenge \mathbb{W}_f an.
- 1.2 Berechnen Sie die Wende**stellen** des Graphen von f und entscheiden Sie begründet, ob es sich dabei um Stellen mit maximaler positiver bzw. maximaler negativer Steigung von G_f handelt oder nicht.

zweite Ableitung

$$f(x) = -\frac{1}{8}x^4 + 2x^2$$

$$f'(x) = -\frac{1}{2}x^3 + 4x$$

$$f''(x) = -\frac{3}{2}x^2 + 4$$

Nullstellen von zweiter Ableitung

$$f''(x) = 0 \Leftrightarrow -\frac{3}{2}x^2 + 4 = 0|\cdot -4$$

$$\Leftrightarrow -\frac{3}{2}x^2 = -4|:\left(-\frac{3}{2}\right)$$

$$\Leftrightarrow x^2 = +\frac{8}{3}$$

also
$$x_1^{**} = -\sqrt{\frac{8}{3}} \approx -1,63$$
 bzw. $x_2^{**} = +\sqrt{\frac{8}{3}} \approx +1,63$

Nachweis der Wendestellen

Es sind jeweils einfache Nullstellen der zweiten Ableitung und damit Wendestellen.

y-Koordinaten

Sind hier nicht gefragt.

Steigung an den Wendestellen

Hierfür $x_1^{**}=-\sqrt{\frac{8}{3}}$ bzw. $x_2^{**}=+\sqrt{\frac{8}{3}}$ in erste Ableitung einsetzen.

$$f'\left(-\sqrt{\frac{8}{3}}\right) = -\frac{1}{2} \cdot \left(-\sqrt{\frac{8}{3}}\right)^3 + 4 \cdot \left(-\sqrt{\frac{8}{3}}\right) \approx -3,35$$

$$f'\left(+\sqrt{\frac{8}{3}}\right) = -\frac{1}{2} \cdot \left(+\sqrt{\frac{8}{3}}\right)^3 + 4 \cdot \left(+\sqrt{\frac{8}{3}}\right) \approx +3{,}35$$

Fazit

Erste Ableitung hat Grad 3 und negativen Leitkoeffizienten. $G_{f'}$ kommt somit von links oben und läuft nach rechts unten. Die Wendestellen haben also weder maximal positive noch maximal negative Steigung. Dies ist an den Rändern der Fall.

- Gegeben ist die Funktion $f: x \mapsto -\frac{1}{8}x^4 + 2x^2$ mit der Definitionsmenge $\mathbb{D}_f = \mathbb{R}$. Der Graph der Funktion f in einem kartesischen Koordinatensystem wird mit G_f bezeichnet.
- 1.1 Ermitteln Sie die maximalen Monotonieintervalle der Funktion f sowie jeweils die Art 9 und Koordinaten der relativen Extrempunkte von G_f . Geben Sie die Wertemenge \mathbb{W}_f an.
- 1.2 Berechnen Sie die Wendestellen des Graphen von f und entscheiden Sie begründet, ob es sich dabei um Stellen mit maximaler positiver bzw. maximaler negativer Steigung von G_f handelt oder nicht.
- 1.3 Gegeben ist die Funktion $g: x \mapsto -4x 2$ mit der Definitionsmenge $\mathbb{D}_g = \mathbb{R}$. Zeigen Sie 2 rechnerisch, dass die Gerade G_g Tangente an den Graphen G_f an der Stelle x = -2 ist.

Nachweis der Tangente

Hierfür müssen folgende zwei Eigenschaften erfüllt sein:

- a) gemeinsamer Punkt von G_f und G_g an der Stelle x=-2 Hierfür einsetzen von x=-2 in die Ausgangsfunktionen. $f(-2)=-\frac{1}{8}\cdot(-2)^4+4\cdot(-2)^2=+6$ $g(-2)=-4\cdot(-2)-2=+6$ somit gemeinsamer Punkt P(-2|+6)
- b) identische Steigung von G_f und G_g an der Stelle x=-2 Hierfür einsetzen von x=-2 in die erste Ableitung f'(x). $f'(x)=-\frac{1}{2}x^3+4x$ $f'(-2)=-\frac{1}{2}\cdot(-2)^3+4\cdot(-2)=-4$ somit identische Steigung an der Stelle x=-2, da $m_g=-4$

Fazit

Aus a) und b) folgt, dass G_q eine Tangente an G_f durch P(-2|+6) ist.

- 1.0 Gegeben ist die Funktion $f: x \mapsto -\frac{1}{8}x^4 + 2x^2$ mit der Definitionsmenge $\mathbb{D}_f = \mathbb{R}$. Der Graph der Funktion f in einem kartesischen Koordinatensystem wird mit G_f bezeichnet.
- Ermitteln Sie die maximalen Monotonieintervalle der Funktion f sowie jeweils die Art 9 und Koordinaten der relativen Extrempunkte von G_f . Geben Sie die Wertemenge \mathbb{W}_f an.
- Berechnen Sie die Wendestellen des Graphen von f und entscheiden Sie begründet, ob 6 1.2 es sich dabei um Stellen mit maximaler positiver bzw. maximaler negativer Steigung von G_f handelt oder nicht.
- Gegeben ist die Funktion $g: x \mapsto -4x 2$ mit der Definitionsmenge $\mathbb{D}_q = \mathbb{R}$. Zeigen Sie 2 rechnerisch, dass die Gerade G_q Tangente an den Graphen G_f an der Stelle x=-2 ist.
- Zeichnen Sie unter Verwendung bisheriger Ergebnisse und weiterer geeigneter Funktionswerte den Graphen G_f für $-4 \le x \le +4$ in ein kartesisches Koordinatensystem. Verwenden Sie als Maßstab 1 LE = 1 cm für beide Achsen.

bereits bekannt aus 1.1 und 1.2

Nullstellen

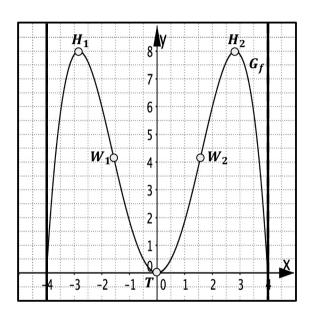
Extremstellen

T(0|0) $H_2(+\sqrt{8}|+8)$ Wendestellen

$$H_1(-\sqrt{8}|+8)$$

 $T(0|0)$
 $H_2(+\sqrt{8}|+8)$

$$x_2^{**} = +\sqrt{\frac{8}{3}} \approx +1,63$$



- Gegeben ist die Funktion $f: x \mapsto -\frac{1}{8}x^4 + 2x^2$ mit der Definitionsmenge $\mathbb{D}_f = \mathbb{R}$. Der Graph der Funktion f in einem kartesischen Koordinatensystem wird mit G_f bezeichnet.
- 1.1 Ermitteln Sie die maximalen Monotonieintervalle der Funktion f sowie jeweils die Art 9 und Koordinaten der relativen Extrempunkte von G_f . Geben Sie die Wertemenge \mathbb{W}_f an.
- 1.2 Berechnen Sie die Wendestellen des Graphen von f und entscheiden Sie begründet, ob es sich dabei um Stellen mit maximaler positiver bzw. maximaler negativer Steigung von G_f handelt oder nicht.
- 1.3 Gegeben ist die Funktion $g: x \mapsto -4x 2$ mit der Definitionsmenge $\mathbb{D}_g = \mathbb{R}$. Zeigen Sie 2 rechnerisch, dass die Gerade G_g Tangente an den Graphen G_f an der Stelle x = -2 ist.
- 2.4 Zeichnen Sie unter Verwendung bisheriger Ergebnisse und weiterer geeigneter Funktionswerte den Graphen G_f für $-4 \le x \le +4$ in ein kartesisches Koordinatensystem. Verwenden Sie als Maßstab 1 LE = 1 cm für beide Achsen.
- 2.0 Während das Bundesamt für Naturschutz seit 20 Jahren die Ausbreitung von Wölfen in Deutschland fördert, fordern u. a. Weidetierhalter und Jäger zunehmend eine Aufhebung des Abschussverbots von Wölfen. Um über die eventuelle Aufhebung dieses Verbots zu entscheiden, soll die Entwicklung der Anzahl der Wolfsrudel in Deutschland modelliert werden. Die Entwicklung seit dem Jahr 2008 lässt sich näherungsweise durch die Funktion N mit der Funktionsgleichung $N(t) = N_0 \cdot e^{c \cdot t}$ mit $t, N_0, c \in \mathbb{R}$ und $t \geq 0, N_0 > 0, c > 0$ darstellen. Der Funktionswert von N gibt die Anzahl der Wolfsrudel in Deutschland zum Zeitpunkt t an. Dabei steht t für die seit Ende des Jahres 2008 $(t_0 = 0)$ vergangene Zeit in Jahren. Endes des Jahres 2013 wurden 18 Wolfsrudel in Deutschland gezählt. Ende 2017 lag die Zahl der Wolfsrudel bereits bei 60.
- 2.1 Ermitteln Sie die Werte der Parameter N_0 und c der Funktion N. Runden Sie N_0 ganzzahlig und c auf drei Nachkommastellen.

Bedingungen aufstellen

$$I \qquad N(5) = 18 \Leftrightarrow N_0 \cdot e^{c \cdot 5} = 18$$

$$II \qquad N(9) = 60 \Leftrightarrow N_0 \cdot e^{c \cdot 9} = 60$$

Quotient der Bedingungen

→ "groß geteilt durch klein"

also
$$\frac{II}{I}$$

$$\Leftrightarrow \frac{N_0 \cdot e^{c \cdot 9}}{N_0 \cdot e^{c \cdot 5}} = \frac{10}{3}$$
 zweites Potenzgesetz

$$\Leftrightarrow \qquad e^{9c-5c} = \frac{10}{3}$$

$$\Leftrightarrow \qquad e^{4c} = \frac{10}{3} \qquad |ln$$

$$\Leftrightarrow \qquad 4c = \ln\left(\frac{10}{2}\right) \qquad |:4$$

$$\Leftrightarrow c = \frac{\ln\left(\frac{10}{3}\right)}{4} \approx +0.301$$

einsetzen von c = +0,301 in I oder II

$$N_0 \cdot e^{0,301 \cdot 5} = 18$$

$$\Leftrightarrow N_0 = \frac{18}{e^{0,301 \cdot 5}} \approx 4$$

- Gegeben ist die Funktion $f: x \mapsto -\frac{1}{8}x^4 + 2x^2$ mit der Definitionsmenge $\mathbb{D}_f = \mathbb{R}$. Der Graph der Funktion f in einem kartesischen Koordinatensystem wird mit G_f bezeichnet.
- 1.1 Ermitteln Sie die maximalen Monotonieintervalle der Funktion f sowie jeweils die Art 9 und Koordinaten der relativen Extrempunkte von G_f . Geben Sie die Wertemenge \mathbb{W}_f an.
- 1.2 Berechnen Sie die Wendestellen des Graphen von f und entscheiden Sie begründet, ob es sich dabei um Stellen mit maximaler positiver bzw. maximaler negativer Steigung von G_f handelt oder nicht.
- 1.3 Gegeben ist die Funktion $g: x \mapsto -4x 2$ mit der Definitionsmenge $\mathbb{D}_g = \mathbb{R}$. Zeigen Sie 2 rechnerisch, dass die Gerade G_g Tangente an den Graphen G_f an der Stelle x = -2 ist.
- 1.4 Zeichnen Sie unter Verwendung bisheriger Ergebnisse und weiterer geeigneter Funktionswerte den Graphen G_f für $-4 \le x \le +4$ in ein kartesisches Koordinatensystem. Verwenden Sie als Maßstab 1 LE = 1 cm für beide Achsen.
- 2.0 Während das Bundesamt für Naturschutz seit 20 Jahren die Ausbreitung von Wölfen in Deutschland fördert, fordern u. a. Weidetierhalter und Jäger zunehmend eine Aufhebung des Abschussverbots von Wölfen. Um über die eventuelle Aufhebung dieses Verbots zu entscheiden, soll die Entwicklung der Anzahl der Wolfsrudel in Deutschland modelliert werden. Die Entwicklung seit dem Jahr 2008 lässt sich näherungsweise durch die Funktion N mit der Funktionsgleichung $N(t) = N_0 \cdot e^{c \cdot t}$ mit $t, N_0, c \in \mathbb{R}$ und $t \geq 0, N_0 > 0, c > 0$ darstellen. Der Funktionswert von N gibt die Anzahl der Wolfsrudel in Deutschland zum Zeitpunkt t an. Dabei steht t für die seit Ende des Jahres 2008 $(t_0 = 0)$ vergangene Zeit in Jahren. Endes des Jahres 2013 wurden 18 Wolfsrudel in Deutschland gezählt. Ende 2017 lag die Zahl der Wolfsrudel bereits bei 60.
- 2.1 Ermitteln Sie die Werte der Parameter N_0 und c der Funktion N. Runden Sie N_0 4 ganzzahlig und c auf drei Nachkommastellen.
- 2.2.0 Im Folgenden gilt $N(t) = 4 \cdot e^{0.301 \cdot t}$.
- 2.2.1 Das Bundesamt für Naturschutz geht davon aus, dass Deutschland maximal Lebensraum für 440 Rudel bieten kann. Berechnen Sie, in welchem Jahr die Anzahl der Wolfsrudel laut dem Modell aus 2.0 voraussichtlich diesen Wert erreicht.

$$N(t) = 440$$

$$\Leftrightarrow$$
 4 · e^{0,301·t} = 440

$$\Leftrightarrow \qquad \qquad e^{0,301 \cdot t} = 110$$

$$\Leftrightarrow$$
 0,301 · $t = \ln(110)$

$$\Leftrightarrow \qquad t = \frac{\ln(110)}{0.301} \approx 15,62$$

Fazit

!!! Achtung !!! 2023 entspricht hier dem Ende von 2023.

Wegen 2008 + 15,62 = 2023,62 wird die Anzahl voraussichtlich im Jahr 2024 erreicht.

- Gegeben ist die Funktion $f: x \mapsto -\frac{1}{8}x^4 + 2x^2$ mit der Definitionsmenge $\mathbb{D}_f = \mathbb{R}$. Der Graph der Funktion f in einem kartesischen Koordinatensystem wird mit G_f bezeichnet.
- 1.1 Ermitteln Sie die maximalen Monotonieintervalle der Funktion f sowie jeweils die Art 9 und Koordinaten der relativen Extrempunkte von G_f . Geben Sie die Wertemenge \mathbb{W}_f an.
- 1.2 Berechnen Sie die Wendestellen des Graphen von f und entscheiden Sie begründet, ob es sich dabei um Stellen mit maximaler positiver bzw. maximaler negativer Steigung von G_f handelt oder nicht.
- 1.3 Gegeben ist die Funktion $g: x \mapsto -4x 2$ mit der Definitionsmenge $\mathbb{D}_g = \mathbb{R}$. Zeigen Sie 2 rechnerisch, dass die Gerade G_g Tangente an den Graphen G_f an der Stelle x = -2 ist.
- 1.4 Zeichnen Sie unter Verwendung bisheriger Ergebnisse und weiterer geeigneter Funktionswerte den Graphen G_f für $-4 \le x \le +4$ in ein kartesisches Koordinatensystem. Verwenden Sie als Maßstab 1 LE = 1 cm für beide Achsen.
- 2.0 Während das Bundesamt für Naturschutz seit 20 Jahren die Ausbreitung von Wölfen in Deutschland fördert, fordern u. a. Weidetierhalter und Jäger zunehmend eine Aufhebung des Abschussverbots von Wölfen. Um über die eventuelle Aufhebung dieses Verbots zu entscheiden, soll die Entwicklung der Anzahl der Wolfsrudel in Deutschland modelliert werden. Die Entwicklung seit dem Jahr 2008 lässt sich näherungsweise durch die Funktion N mit der Funktionsgleichung $N(t) = N_0 \cdot e^{c \cdot t}$ mit $t, N_0, c \in \mathbb{R}$ und $t \ge 0, N_0 > 0, c > 0$ darstellen. Der Funktionswert von N gibt die Anzahl der Wolfsrudel in Deutschland zum Zeitpunkt t an. Dabei steht t für die seit Ende des Jahres 2008 $(t_0 = 0)$ vergangene Zeit in Jahren. Endes des Jahres 2013 wurden 18 Wolfsrudel in Deutschland gezählt. Ende 2017 lag die Zahl der Wolfsrudel bereits bei 60.
- 2.1 Ermitteln Sie die Werte der Parameter N_0 und c der Funktion N. Runden Sie N_0 4 ganzzahlig und c auf drei Nachkommastellen.
- 2.2.0 Im Folgenden gilt $N(t) = 4 \cdot e^{0.301 \cdot t}$.
- 2.2.1 Das Bundesamt für Naturschutz geht davon aus, dass Deutschland maximal Lebensraum für 440 Rudel bieten kann. Berechnen Sie, in welchem Jahr die Anzahl der Wolfsrudel laut dem Modell aus 2.0 voraussichtlich diesen Wert erreicht.
- 2.2.2 Geben Sie die Funktionsgleichung der Funktion N in der Form $N(t) = N_0 \cdot b^t$ mit b > 0 an und folgern Sie daraus die prozentuale Zunahme der Anzahl der Wolfsrudel pro Jahr. Runden Sie b auf drei Nachkommastellen.

$$N(t) = N_0 \cdot e^{0.301 \cdot t}$$

$$N(t) = N_0 \cdot b^t$$
 werden

also
$$e^c = b$$

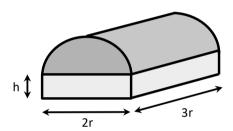
$$\Leftrightarrow \qquad b = e^{0.301} \approx 1.351$$

Fazit

soll

Die Anzahl nimmt pro Jahr um ca. 35,1% zu.

3.0 Ein Tiergarten plant den Bau eines Tropenhauses, in dem ein künstliches Ökosystem mit Lebensbedingungen für tropische Pflanzen- und Tierarten geschaffen werden soll. Das Tropenhaus soll die Form eines Quaders mit aufgesetztem Halbzylinder bekommen. Der Radius des Halbzylinders wird mit r bezeichnet. Der Quader hat die Breite 2r, die Länge 3r und die Höhe h (siehe Skizze). Um möglichst ideale klimatische Bedingungen zu schaffen, sollen die Außenwände des Tropenhauses und das Dach aus Glas bestehen. Hierfür sind $1.000~{\rm m}^2$ Glas vorgesehen. Die Maßzahl des Volumens des Tropenhauses in Abhängigkeit vom Radius r des Halbzylinders lässt sich durch die Funktionswerte der Funktion $V: r \mapsto V(r)$ beschreiben. Aus den Baurichtlinien geht hervor, dass der Radius r des Halbzylinders maximal $8.5~{\rm m}$ betragen darf. Der Tiergartenbetreiber fordert hierfür mindestens $4~{\rm m}$. Bei den Berechnungen kann auf das Mitführen von Einheiten verzichtet werden.



3.1 Stellen Sie eine Gleichung der in 3.0 eingeführten Funktion V auf. Bestimmen Sie dazu vorab die Maßzahl A des Flächeninhalts der insgesamt zu verglasenden Oberfläche des Tropenhauses in Abhängigkeit des Radius des Halbzylinders und der Höhe des Quaders.

[mögliche Ergebnisse: $A(r, h) = 10rh + 4\pi r^2$ und $V(r) = 600r - 0.9\pi r^3$]

Zielfunktion

Volumen eines Quaders

$$V_0 = l \cdot b \cdot h = 2r \cdot 3r \cdot h = 6r^2h$$

Volumen eines Zylinders (vgl. Merkhilfe)

!!! Achtung !!! die Höhe des Zylinders ist mit 3r beschrieben

$$V_Z = r^2 \cdot \pi \cdot h = r^2 \cdot \pi \cdot 3r = 3\pi r^3$$

also ergibt sich für das Gesamtvolumen von Quader und halben Zylinder

$$V = V_Q + \frac{1}{2} \cdot V_Z = 6r^2h + \frac{1}{2} \cdot 3\pi r^3 = 6r^2h + 1.5\pi r^3$$

Nebenbedingung

Oberfläche soll 1.000 m² betragen.

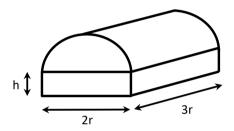
$$0 = 1.000 \Leftrightarrow 2 \cdot 2r \cdot h + 2 \cdot 3r \cdot h + 2 \cdot \frac{1}{2} \cdot r^2 \cdot \pi + \frac{1}{2} \cdot 2 \cdot r \cdot \pi \cdot 3r = 1.000$$
$$\Leftrightarrow 4rh + 6rh + \pi r^2 + 3\pi r^2 = 1.000$$
$$\Leftrightarrow 10rh + 4\pi r^2 = 1.000$$
$$\Leftrightarrow 10rh = 1.000 - 4\pi r^2$$

$$\Leftrightarrow h = \frac{1.000 - 4\pi r^2}{10r}$$

einsetzen von $h = \frac{1.000 - 4\pi r^2}{10r}$ in Zielfunktion

$$V = 6r^{2}h + 1,5\pi r^{3} = 6r^{2} \cdot \left(\frac{1.000 - 4\pi r^{2}}{10r}\right) + 1,5\pi r^{3} = \frac{6.000r^{2} - 24\pi r^{4}}{10r} + 1,5\pi r^{3}$$
$$= 600r - 2,4\pi r^{3} + 1,5\pi r^{3}$$
$$= 600r - 0.9\pi r^{3}$$

3.0 Ein Tiergarten plant den Bau eines Tropenhauses, in dem ein künstliches Ökosystem mit Lebensbedingungen für tropische Pflanzen- und Tierarten geschaffen werden soll. Das Tropenhaus soll die Form eines Quaders mit aufgesetztem Halbzylinder bekommen. Der Radius des Halbzylinders wird mit r bezeichnet. Der Quader hat die Breite 2r, die Länge 3r und die Höhe h (siehe Skizze). Um möglichst ideale klimatische Bedingungen zu schaffen, sollen die Außenwände des Tropenhauses und das Dach aus Glas bestehen. Hierfür sind $1.000~{\rm m}^2$ Glas vorgesehen. Die Maßzahl des Volumens des Tropenhauses in Abhängigkeit vom Radius r des Halbzylinders lässt sich durch die Funktionswerte der Funktion $V: r \mapsto V(r)$ beschreiben. Aus den Baurichtlinien geht hervor, dass der Radius r des Halbzylinders maximal $8,5~{\rm m}$ betragen darf. Der Tiergartenbetreiber fordert hierfür mindestens $4~{\rm m}$. Bei den Berechnungen kann auf das Mitführen von Einheiten verzichtet werden.



3.1 Stellen Sie eine Gleichung der in 3.0 eingeführten Funktion V auf. Bestimmen Sie dazu vorab die Maßzahl A des Flächeninhalts der insgesamt zu verglasenden Oberfläche des Tropenhauses in Abhängigkeit des Radius des Halbzylinders und der Höhe des Quaders.

[mögliche Ergebnisse:
$$A(r, h) = 10rh + 4\pi r^2$$
 und $V(r) = 600r - 0.9\pi r^3$]

3.2 Um den Pflanzen und Tieren möglichst viel Lebensraum zur Verfügung zu stellen, soll das Tropenhaus maximalen Rauminhalt besitzen. Bestimmen Sie den Radius r so, dass die Maßzahl des Volumens des Tropenhauses den absolut größten Werte annimmt und geben Sie diesen maximalen Wert an. Runden Sie Ihre Ergebnisse auf zwei Nachkommastellen.

erste Ableitung von Zielfunktion

$$V(r) = 600r - 0.9\pi r^3 = -0.9\pi r^3 + 600r$$
$$V'(r) = -2.7\pi r^2 + 600$$

Nullstellen von erster Ableitung

$$V'(r) = 0 \Leftrightarrow -2.7\pi r^2 + 600 = 0$$

$$\Leftrightarrow$$
 $-2.7\pi r^2 = -600$

$$\Leftrightarrow r^2 = \frac{600}{2.7\pi}$$

also
$$r_1 = -\sqrt{\frac{600}{2,7\pi}} \approx -8,41 \notin \mathbb{D}_V$$
 oder $r_2 = +\sqrt{\frac{600}{2,7\pi}} \approx +8,41 \in \mathbb{D}_V$

Monotonietabelle

Hierbei die Ränder von \mathbb{D}_V beachten. Diese sind in erster Ableitung ausgeschlossen.

r	+5	+8,41	+8
V'(r)	igoplus	0	
G_V	sms	НОР	smf

Fazit

 G_V kommt von links unten und geht nach rechts unten (vgl. Monotonie).

Also ergibt sich das absolut maximale Volumen für $r=+\sqrt{\frac{600}{2.7\pi}}\approx+8.41$ mit

$$V_{max} \approx -0.9\pi \cdot (+8.41)^3 + 600 \cdot (+8.41) \approx 3.364.18$$